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Abstract. The exact expression of the partition function of a three-dimensional cubic k ing  
model, with nearest-neighbour interactions, is given, when a certain relation between the 
coupling constants of the model is satisfied. This disorder solution is then compared with 
a partially resummed high-temperature expansion of the partition function of the model. 
The constraints on this expansion, which result from the existence of the disorder solution 
and from the inversion relation are discussed. 

1. Introduction 

Presently, disorder solutions (Stephenson 1970) are most often the only exact and 
quantitative piece of information one can obtain on the partition functions of three- 
dimensional models (Welberry and Miller 1978). Among these models, the Ising model 
on a cubic lattice deserves particular attention, because of its simplicity. Making use 
of a simple criterion, which will be fully developed in another paper (Jaekel and 
Maillard 1985), we exhibit here a disorder solution, having codimension one in the 
parameter space of a cubic Ising model with three parameters (interactions between 
nearest neighbours only). The model will be more precisely described in the following. 

The very simple character of this solution (which is rational on that disorder variety) 
leads us to study how this exact expression agrees with already known information, 
available under the form of diagrammatic expansions. For that purpose, the second 
part of the paper is devoted to the computation of a partially resummed high- 
temperature expansion of the partition function. Finally, and with the help of the 
other exact piece of information on this model, the inversion relation, we analyse the 
constraints on the expansion (Baxter 1980), that result from the existence of this 
solution, keeping in view a complete determination of the partition function. 

2. Geometrical derivation 

We shall consider a three-dimensional cubic Ising model, with interactions between 
nearest neighbours. There will be three different coupling constants, arranged in a 
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staggered way, as indicated by figure 1, which represents the elementary cell generating 
the whole lattice. One will note in particular that in two directions, the plane sections 
correspond to checkerboard lattices (Domb and Green 1972), without frustration, while 
in the remaining direction, the plane sections correspond to particular staggered lattices, 
with full frustration (see figure 2). The partition function per site 2 of this model will 
be defined by: 

Z N ( K ,  K ' ,  L ) = c  n e x p ( K p , u j )  U( E 2 2  
( 0 )  (0) 

2 
4 Y  

Figure 1. Elementary cell generating the lattice. 

I I I I 

Figure 2. Plane sections of the lattice in the different directions 

where K ,  alternatively stands for * K ,  i K ' ,  or L, according to figures 1 and 2, and i, 
j denote the different sites (of total number N ) .  We shall exhibit an exact solution 
for the partition function per site, for a certain relation between the three parameters, 
making use of a criterion which is made explicit and developed elsewhere (Jaekel and 
Maillard 1985). According to this criterion, one obtains the relation between the 
parameters, by requiring the following property: when summed over the four spins of 
the upper face, the Boltzmann weight for an elementary cube does not depend any 
longer on the four spins of the lower face (see figure 3): 

W ( K ,  K ' ,  L , s ) =  exp[2KX(a)+ La s + 2 K ' X ( s ) ]  
(U) 
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X (  a )  = ;( -ala2+ V2U3 + a3a4+ a4cr,) ( X ( a ) 2 =  1 )  

Figure 3. Spins on an elementary cube. 

Introducing high-temperature variables: 

T = tanh 2 K  T' = tanh 2 K '  7 = tanh L 

this condition can be rewritten: 

w ( T , T ' , r , s ) = C  [ l + T X ( a ) ]  ( l + ~ ~ ~ s ~ )  [ l + T ' X ( s ) ]  
(U) i =  I 1 

= 2'[ 1 + ~ ~ n ' +  ( T ' T +  T ' ) X ( s ) ]  

must be independent of (s), that is: 

r 2 ~ +  T ' = O  

so that the Boltzmann weight of the cube becomes: 

Let us now consider the whole lattice, with the following boundary conditions: on 
the upper ( x y )  layer, only the interactions K which correspond to the squares of type 
A of figure 2 are present. It then appears that the summation over all the spins of the 
upper layer, when condition ( 1 )  is realised, leads one back to the previous situation, 
but this time on the next layer, and for the squares of type B. This allows one to 
iterate this procedure, until all the spins of the whole cubic lattice have been summed 
over. The partition function per site of this lattice is then given by the simple formula: 

Z (  K ,  K ' ,  L ) IT~T+T,=O= W*1'4. (3) 

Clearly, the particular boundary conditions introduced here, to be compared with 
the standard periodic boundary conditions, do not modify the partition function per 
site in the thermodynamic limit, at least in the high-temperature part of the physical 
domain (disorder domain). The occurrence, in the heart of the phase diagram of a 
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purely three-dimensional model, of a large algebraic variety (co-dimension one), where 
the partition function simplifies to give a zero-dimensional partition function, con- 
stitutes a remarkable phenomenon. It then appears interesting to try to integrate this 
valuable piece of information within the present knowledge about the partition function, 
i.e. expansions, and at best partially resummed expansions, and to look for the 
consequences of this exact solution on the analytical behaviour of the partition function. 

3. Diagrammatic expansion 

3.1. Partially resummed expansion 

In this section we shall determine the normalised partition function per site A in a 
particular diagrammatic expansion of the type which has already been used for the 
standard cubic anisotropic Ising model (Jaekel and Maillard 1982). It is related to 
the partition function per site by the following formula: 

( t  = tanh K ,  t ' =  tanh K ' ,  T = tanh L ) .  (4) 
Z ( K ,  K ' ,  L )  A( t ,  t ' ,  T) = 

2 cosh K cosh K '  cosh L 

To determine the latter, we shall resum a high-temperature 'expansion in one of the 
three directions (here resummation in T ) ,  and compute it up to order four in t and t ' .  
The different terms in the expansion are given by all the closed diagrams one can draw 
on the lattice. The resummation in T and the particular staggered structure of the 
lattice lead us to consider three different types of diagrams: 

( i )  The two-dimensional diagrams which lie in the ( x z )  and ( y z )  planes of figure 
2 ; these identify with the diagrams of the two-dimensional checkerboard Ising model 
(Domb and Green 1972), and will be called type (I)  diagrams (contribution In A I ) .  
As the negative bonds must always occur in an even number, their signs do not modify 
any contribution so that the total sum of type ( I )  diagrams can be directly written 
(Jaekel and Maillard 1984): 

T'( 1 + T2) In A 1 = [ ~ 2 / ( 1  - ~ ~ ) ] [ ~ ' ( t ' + t ' ' ) + 2 t t ' ) ] + 2  [ T 2 ( t 7 + t r 5 ) + ( 1  + T 4 ) f t ' ] '  
( 1  - T 4 ) 3  

+ [T'/( 1 - T ~ ) ~ ] [ T ~ (  -;+;T~)( t 4 +  f") - 4 ~ ' ( 2  + T')( t 3 t '+  f 3 t )  

- ( 5 + T 4 ) ( 1  +2T4)t2f"]. ( 5 )  

( i i )  The strictly three-dimensional diagrams (of order four in t and t ' )  which lie 
in the particular vertical tubes standing over the type (A) or ( B )  squares of the ( x y )  
plane (see figure 2);  these will be called type (11) diagrams and their total contribution 
will be denoted by In A,, .  

( i i i )  The strictly three-dimensional diagrams (of order four in t and t ' )  which lie 
in the particular vertical tubes standing over the type (C) squares of the ( x y )  plane, 
and which we shall call type (111) diagrams. Their contribution will be denoted by 
In kII. 

These last two classes of diagrams have already been displayed in the study of the 
standard anisotropic three-dimensional cubic Ising model, but their respective contribu- 
tions will differ here, in order to account for the specific couplings in this new model. 
In particular, it appears as a consequence of the negative bonds, that a good number 
of diagrams cancel each other. This occurs separately for type (11) and (111) diagrams 
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(see figure 4). Indeed, it is easy to see that a diagram with the opposite contribution 
can be obtained by reflecting the lower basis with respect to its diagonal, so that the 
combinatorial factors for diagrams of opposite contributions are exactly equal. 
However, the remaining diagrams must be considered separately according to their type: 
Type (11 )  diagrams. The diagrams and their respective contributions are given by 
figure 5 .  Let us note that the rational functions in T,  which are not easy to determine 
directly, are better obtained by combining the knowledge of the diagrammatic 
expansion up to order six in T with the following two simple limits: at t = t ’ ,  the 
contribution of each diagram is equal to the corresponding one of the standard model 
(with an overall change of sign, except for the disconnected diagrams); moreover at 
t = 0, the same identification occurs but this time with T’ replacing T ~ .  The total sum 

Figure 4. Diagrams cancelling each other. 

act4+ 1 1 4 )  2 T 2 (  f 3 f ’ +  f 3 r )  + 2T4(  t4 + tC4) 

1 - T 4  

2 T 4 f  t” + 2 T6( f 1’ + f ’3 2 )  f T 8 (  f 4  + f4) 
( I  - T 4 ) *  

4 T 4 f 2 f 2  + 4 T 6 (  f 3 f ’ +  f 3 t )  + 2 T s (  f 4 +  f r 4 )  

( 1  - T 4 ) >  

611 
[ T 4 ( i  f5T4)f2f’2+2T6(1+T4)(f3f’+f’3f) [ 2 T 4 ( 1  + 5 T 4 ) f Z f r Z + 4 T 6 ( 1  + T 4 ) ( f 3 f ’ f  f 3 f )  

f i T 8 (  1 + T 4 ) (  f 4 +  [( I - T 4 ) - ’ ]  +T8( 1 + T 4 ) (  f 4 +  f4)] [( 1 - T 4 ) - 3 ]  

Figure 5. Type (11) diagrams and contributions. 
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is then given by: 

t 2 t t 2 .  
1 + 5r4+ 5~~ + 712 ( t4  + t r 4 )  ( 1 + 4r4+ r8 )  r4( 1 + r4) 

( 1  - r4)3  4 ( 1  - T 4 ) 3  ( 1  - r4)3 
In A l l  = - -- 2r2 ( P t ’  + t ’ 3 t )  - 9 

( 6 )  

Let us also note that this contribution can be obtained in another indirect way; indeed, 
at this order (four in t and t ’ )  the partition function of the model studied here has the 
same three-dimensional part as that of a lattice reduced to a single tube (quasi 
one-dimensional lattice). The exact computation of the latter is easily accomplished 
and is given in the appendix, showing that the extracted three-dimensional part 
effectively coincides with expression ( 6 ) .  
Type (ZII) diagrams. The diagrams and their contributions are given by figure 6 .  Their 
total contribution is 

3 r4( 1 + r4) (1  + 4r4+  r 8 )  
In AI11 = -- ( t 4 + t r 4 ) - 2 r 2  ( t 3 t ’ +  t ‘ 3 t )  2 ( 1  - r 4 ) 3  ( 1  - r 4 ) 3  

1 1 + 1 7 ~ ~ +  17r8+ r I 2  
-- t2t t2.  

2 ( 1  - r4)3  
(7) 

For these diagrams, only the t = t ’  limit can be used, showing that the respective 
contributions identify with those of the standard anisotropic cubic Ising model (with 
a change of sign, except again for the disconnected diagrams). Summing over the 
contributions of the three classes, one gets the required expansion: 

(8) In A = In AI + In All  +In Al l l .  

4T4f f ” + 2T2( f ’ f ’ + f’3 f )  
1 - T 4  

2 r s f 2 f ’ 2 + 2 T 6 ( f 3 f ’ + f ’ 3 f ) + T 4 ( f 4 +  f‘4) 4 i4 (1  + T 4 ) f 2 f r 2 f 4 T 6 ( f 3 f ’ + f r 3 f )  

( 1  - T4)*  ( 1  - T4)’ 

M 
[ 5 T812 1’’ + 2T6(  1 + T 4 ) (  l 3  f ’ f f f 3  I )  

+ f T 4 (  1 + T 4 f  T 8 ) ( f 4 +  f4)] [( 1 - T4)-’] 

[ T 4 ( 2  + 8 T 4  + 3 T 8 ) f 2 f ”  f 4T6( 1 + T 4 ) (  f 3 f ’ +  f ‘ 3  f )  

+ T 8 ( 2  - + T 4 ) ( f 4 +  f’4)] [ ( I  -.‘))-’I 
Figure 6. Type (111) diagrams and contributions. 
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3.2. Discussion 

3.2.1. Inversion relation and disorder solution. A straighforward modification of the 
reasoning which allowed one to obtain the inversion relation on the standard aniso- 
tropic cubic king model (Jaekel and Maillard 1982) shows that the partition function 
of the model studied here must also satisfy the following inversion relation: 

Z ( K ,  K ’ ,  L ) Z ( - K , - K ’ ,  L + i r / 2 ) = 2 i s i n h 2 L  

or 

I n ~ ( t ,  t’, T ) + l n ~ ( - t , - t ’ , ~ - ’ ) = I n ( l - t ~ ) + I n ( l - t ’ ~ ) .  (9) 

Indeed, this relation is easily seen to be satisfied by the expansion of In A, up to order 
four (5,6,7,8).  Moreover, the inversion relation also allows one to put constraints on 
the different terms which build In A (8). First, it is well known that type (I) diagrams, 
which correspond to the expansion of the partition function of the checkerboard 
two-dimensional Ising model satisfy an inversion relation: 

In AI(  f ,  t ’ ,  T )  +In Al(-t,  -?’, T - ’ )  = In( 1 - t 2 )  + In( 1 - f 2 ) .  

Then, type (11) diagrams can be extracted from the partition function of the single 
tube model considered in the appendix, which verifies the same inversion relation. 
They satisfy 

InA,,(t, t’ ,  T ) + l n A l l ( - t ,  - t ’ ,  T - ’ ) = O .  

Finally, from the global inversion relation (9), type (111) diagrams must also satisfy 

In AIl1(  t ,  t ’ ,  T )  +In - t ,  - t ’ ,  T - ’ )  = 0. 

The validity of the disorder solution (2,3) is also easily verified, up to order four, 
on expansion (5,6,7,8).  However, as in the case of the inversion relation, it can also 
be used to put separate constraints on the different parts which build In A.  From the 
already known disorder solution for the checkerboard two-dimensional Ising model 
(Baxter 1984) it results that type (I)  contributions verify 

In h l ( - t ‘ / T 2 ,  t ’ ,  ~ ) = I n ( l  - t ‘ 2 ) = - t ’ 2 - - f t ’ 4 + o ( t r 4 ) .  

Noting that, at this order, the disorder relation ( 1  1 is 

t = - t’/ T~ + ( I - T - ~ )  t3/ T~ + o( t r 4 )  

and that 

( ~ = 2 t / ( 1 + ? ) ,  ~ ‘ = 2 t ’ / ( l + t ‘ ~ ) ) ,  

In AIi72T+T,=O=In A l ( - t ’ / T 2 ,  t’, r)+0(tt4), 

one gets 

In A,,,> T +  T,=O = - t ’’ - i t  ’4 + O( t ’ 4 ) .  

As is shown in the appendix, the verification of the disorder solution By the partition 
function of the single tube model also implies (up to order four), on type (11) 
contributions: 

In A11lr2T+T,=O = ( 1  - ~ - ~ ) r ’ ~ / 4 + 0 (  t4). 

Finally, from the global disorder solution (3,4),  type (111) diagrams must satisfy: 

In AIIIJT2T+T~=0 = ~ ( t ’ ~ ) .  
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Let us just remark that, for the inversion relation and for the disorder solution also, 
the 1 - T~ singularities which occurred in the diagram resummation exactly cancel, in 
order to give the simple rational expressions entering both equations. 

3.2.2. Constraints. From the previous verifications it appears that these two remarkable 
and exact properties (the inversion relation and the disorder solution) constrain rather 
strongly the expansion of the partition function. One can then hope to determine this 
expansion, by combining these two exact properties with a qualitative knowledge of 
the diagrammatic expansion. Indeed, the presence of a unique singularity ( 1  - 7')' at 
this order, allows one to write: 

In A I I  + In AI11 = [ P( T ~ ) /  ( 1 - T")~]( t4 + t4) + [ Q( T ~ ) /  ( 1 - T')']( t 3  t' + t ' 3  t )  

+ [ R ( T ' ) / (  1 - . r 4 ) 3 ] t 2 t ' 2 + .  . . 

P, Q, R are polynomials which must then verify (inversion symmetry) 

P(  T 2 )  = T'*P( 1/ T 2 )  (resp. for Q and R ) .  

The disorder solution then implies the following factorisation condition: 

( 1  + T p ) P (  T 2 )  - T 2 (  1 + T 4 ) Q (  7') + T4R(  T 2 )  = -( 1 - T4)'( 1 - T8). 

Collecting the different pieces of information shows that the expansion is not yet fully 
determined. One could then envisage completing the information with a closer 
examination of the different terms which enter the polynomials P, Q, R, and which 
come from different diagrams (for instance, no T~ and T~ terms are present in Q). 
Moreover, the nature of the singularities which must occur in the expansion is not 
even quite clear (are there only ( 1  - T ~ )  singularities?). A clarification of this problem 
appears as a necessary step towards a systematic determination of the partition function, 
using this method. 

4. Conclusion 

The partition functions of three-dimensional models, like the king model studied here, 
are still poorly understood objects. Hence the knowledge of the latter on some 
remarkable manifold, like the disorder variety, is a valuable piece of information. 

The simultaneous use of the disorder solution and of the inversion relation has 
made it possible to derive a maximum number of constraints to be imposed on an 
adapted diagrammatic expansion. Still more constraints would be obtained if the 
inversion were associated with spatial symmetries of the model, in order to generate 
a larger group of symmetries. However, to get symmetries which do not commute with 
the inversion, one needs to increase the number of parameters in the model (i.e. 
different couplings on the twelve bonds of the elementary cube). Simple disorder 
solutions of the type studied here can still be found, though they correspond to varieties 
of higher co-dimensions (Jaekel and Maillard 1985). On the other hand, in the most 
interesting cases, the group can then be infinite (for Potts models, like the two- 
dimensional checkerboard one, (Jaekel and Maillard 1984)) and generate, from the 
disorder variety, an infinite number of transformed varieties. 
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The regular analytic character of the expression taken by the partition function on 
a remarkable submanifold, (here a rational expression), also leads in general to 
constraints on its analytical behaviour in its whole physical domain. In particular, 
either the critical manifold( s)  will avoid the disorder variety, or, at their intersection, 
there will result severe constraints on the singular part of the partition function. This 
can then be arranged in several ways. In the case of a single critical manifold, the 
amplitude of the corresponding singular part will vanish at the intersection (for a 
constant exponent) or (for a varying one) the exponent will there become an integer. 
In the case of several critical manifolds and a disorder variety intersecting simul- 
taneously (for instance along a tricritical subvariety), this will lead to the cancellation 
of some combination of the amplitudes of the respective singular parts, or even to the 
cancellation of all the amplitudes (different exponents), or else to the trivialisation of 
the varying exponents. It can be noted that the presently known cases of such regular 
exact solutions correspond either to no intersection inside the physical domain (two- 
dimensional triangular Potts (Rujan 1984) or Ising with a field (Verhagen 1976), o r  to 
a tricritical intersection (Sherrington-Kirkpatrick model, for which Nishimori ( 198 1 )  
has developed in the same way the consequences of such a regular solution for the 
phase diagram). 

Appendix. Single tube partition function 

We shall consider here a lattice which is similar to the one introduced in § 2, but this 
time restricted to a single tube (see figure 7). Its partition function per site 2 is easily 
computed. With the same notations as in 0 2, it can be written: 

I I 
I 

Figure 7. Single tube lattice. 

I 
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Denoting: 

n s m  

one remarks that: 

so that the partition function per site is obtained from the largest eigenvalue A of the 
matrix M :  

l n i & = $ I n A  

which is one of the roots of the following characteristic polynomial: 

A 2 - (  1 + T 4 + 2 T 2 m ' ) A  + T4( 1 - T2)( 1 - T'2) = o .  
The expansion in t and t' can be directly determined, leading to the normalised partition 
function per site: 

- 1 r2 1 + 5 r 4  + 1 1 7' - TI2 ( t4  + t f4 )  
In A = - 7 [ r2( t 2  + t f2 )  + 2t t ' l  - 

2 : - 7  (1  - T4)3 8 

.2( 1 + 6r4 + 7 8 )  

(1  - 74)3 

r4( 1 + 7 4 )  

(1  - 7 4 ) 3  
- ( t 3 t ' +  t ' 3 t ) - 6  t 2 t 2 .  

On the other hand this expansion is also given by the sum of all the closed diagrams 
lying inside the tube. These are of two kinds: strictly three-dimensional ones, which 
identify with the type (11) diagrams of Q 3, and the following two-dimensional diagrams: 

disconnected ones: 

( r 3 t ' +  r r 3 t )  -- t2tt2. 
2 ( 1  - T4)3 

From these results, type (11) diagrams are easily deduced by difference. 
From geometrical considerations, one can argue that the partition function per site 

of this model must satisfy an inversion relation. Taking the corresponding automorphic 
factors into account, the latter leads to the following equation in In A: 

In,K(t, t ' ,  r)+lnA(-t , - t ' ,  1 / r ) = t l n ( l - t 2 ) + f l n ( l - t " ) .  

One should note that the two-dimensional part, which also identifies with the partition 
function of a strip model, for which similar geometrical arguments hold, also verifies 
the same equation. 

A straightforward transposition of the iterative procedure used in 0 2, shows that 
for the same relation between the parameters of the model ( l ) ,  the partition function 
per site of a single tube must also reduce to that of a cube (up to a (cosh L)"* factor): 
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Indeed, when relation ( I )  is inserted into equation (1  l ) ,  the latter becomes 

In .Tlr2j-+T,=0 = - t‘’ - ( 1 + T - ~ )  tf4/4 + O( t f4)  

which does correspond to the expansion of (10) and (12): 

(note that relation ( 1 )  corresponds to a triangulation of the matrix M) .  
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